Sách báo viết về Einstein

 

 

Những bất thường trên não Einstein
Einstein bông đùa như thế nào?
Bí ẩn thiên tài của Einstein
Einstein thử nghiệm thuyết Tương đối như thế nào?
Einstein và thuyết Tương Ðối

 

Những bất thường trên não Einstein

Sau khi cha đẻ của thuyết tương đối qua đời, não của ông được bảo quản và chia thành 240 khối nhỏ. Tìm hiểu những bí ẩn của trí thông minh nơi con người xuất chúng này, một số nhà nghiên cứu đã có những khám phá bất ngờ.

Vào một ngày mùa xuân năm 1955, tang lễ của Albert Einstein diễn ra lặng lẽ, chỉ một số ít người thân dự lễ. Trong tiếng cầu kinh của vị chủ tễ, tro của Einstein được rắc vào không khí, nhờ gió mang đi. Thiên tài có bờm tóc trắng mất ngày 18/4/1955 do vỡ phình mạch, thọ 76 tuổi, để lại cho thế giới một phương trình một ẩn số: bí ẩn trí tuệ của ông. Não của ông là cơ quan duy nhất được bảo quản để giải đáp khát khao này của giới khoa học.

Thời ấy chưa có kỹ thuật ghi hình não, phương pháp phổ biến lúc đó là phẫu thích não của những nhân vật nổi tiếng vừa qua đời để khám phá những bí ẩn của nó. Người đã trích lấy não (mà không được phép) của Einstein là Thomas Harvey, bác sĩ bệnh lý học thuộc bệnh viện Princeton (Mỹ).

Não của Einstein nặng 1,230 kg, một trọng lượng trung bình, chứng tỏ trí thông minh không được tính bằng kilo. Kế đó, Harvey chụp một loạt ảnh (đen trắng), rồi cắt khối chất xám cô đặc đó thành 240 khối vuông nhỏ, mỗi khối 10 cm3, bảo quản trong formol, rồi bỏ bẵng gần 30 năm. Sự thể hẳn sẽ bị chôn vùi nếu không có nhà báo Steven Levy. Tay phóng viên trẻ kiên trì và bướng bỉnh ấy (sau trở thành tổng biên tập nhật báo lớn Newsweek) tìm ra dấu vết chiếc bình quý báu trên. Tin này gây xôn xao và bất bình trong cộng đồng khoa học, họ đòi Harvey phải giao lại di vật trí tuệ này, nhưng Harvey nhất quyết không nghe. Cho đến năm 1985, ông mới chấp nhận cho một nhóm nghiên cứu thuộc Đại học Berkeley và Alabama được ngắm qua một lát. Thời gian ngắn ngủi ấy đủ để nhóm phát hiện sự to quá mức của các tế bào có nhiệm vụ nuôi dưỡng tế bào thần kinh. Có lẽ nhờ vậy mà cha đẻ của thuyết tương đối mới có thể bắt các tế bào thần kinh hoạt động cật lực. Phần não còn lại không có gì đặc sắc.

Chuyện sẽ dừng lại ở đây nếu Harvey không đổi ý mà khăng khăng giữ riêng của báu cho mình. Bước sang tuổi 80, Harvey rốt cuộc trao bộ não cho những người thành thạo. Nhờ vậy, vào năm 1999, Sandra Witalson và Debra Kigar, 2 chuyên gia thần kinh lỗi lạc thuộc đại học Halmiton (Canada) mới có thể chiêm ngưỡng khối hình ráp gồm 240 mảnh này trong phòng thí nghiệm và cả những bức ảnh đã 40 năm.

Não người bình thường (trái) và não Einstein.

Não bộ của 35 nam và 56 phụ nữ có sức khỏe tâm thần tốt đã được đem so sánh. Một sự bất thường đập ngay vào mắt các nhà nghiên cứu: khe Sylvius, một rãnh sâu phân ranh thùy thái dương và thùy trán, lại rất khác với khe của tất cả các não từng được nghiên cứu.

Vì vậy, Einstein có những thùy đỉnh rất rộng, mà các thùy này kiểm soát cảm giác không gian, nhờ đó chúng ta định được vị trí các vật thật hoặc tưởng tượng. Các thùy này cũng chứa những vùng chuyên về lập luận toán học và không gian trừu tượng, tức là những ưu điểm của Einstein.

Nhóm nghiên cứu còn nhận thấy một đặc điểm khác biệt khác nữa, đó là thùy đỉnh trái phát triển ngang với thùy đỉnh phải. Thường thì thùy đỉnh trái nhỏ hơn, vì bị nén bởi những vùng lân cận có chức năng về ngôn ngữ. Có thể đây là một cách giải thích cho sự kiện nhà vật lý học nổi tiếng biết nói muộn, khi đã lên 3. Einstein không có nắp đỉnh, một vùng kiểm soát các cử động tinh tế, khéo léo của bàn tay, dù vậy ông vẫn chơi violon trong suốt cuộc đời. "Đó hẳn là nhờ một hiện tượng bù đắp ở vỏ não", Marie Thérèse Perenin, chuyên viên thần kinh tâm lý thuộc Viện y tế và nghiên cứu y học quốc gia Pháp, nhận xét. Ý bà muốn nói não của chúng ta rất uyển chuyển, biết thích nghi với những công việc thuộc những vùng mới mà não chưa từng thực hiện trước đó.

Một bài học cơ thể được rút ra từ trường hợp của Albert Einstein: khi ta chờ đợi trông thấy một bộ não "kiểu mẫu" thì ta gặp một dị tật nghiêm trọng. Sự bất thường ấy không gây một trở ngại nào, ngược lại còn giúp đối tượng trở thành một trong những nhà bác học lỗi lạc trong lịch sử. Theo Olivier Robain, chuyên viên về dị tật não, "đây là một bằng chứng cho thấy giải phẫu học não chưa đủ để xác định năng lực trí tuệ. Nếu giờ đây một đứa trẻ ra đời có cùng dị tật, không có gì đảm bảo nó sẽ trở thành một thiên tài". Có những yếu tố khác can thiệp vào cuộc chơi, nhưng những yếu tố này bị chôn vùi mãi mãi trong hàng tỷ vùng tiếp xúc giữa hai tế bào thần kinh kích hoạt bộ não của Albert Einstein.

Kiến thức ngày nay (theo Science et Vie)

 

 

Einstein bông đùa như thế nào?

Bích Hạnh

 

Trong những năm tháng cuối đời, Albert Einstein đã cố gắng làm khuây khỏa con vẹt rầu rĩ của mình bằng cách nói với nó những câu hài hước tục tĩu và giả vờ ốm để tránh mặt khách đến thăm. Một cuốn nhật ký mới được tìm thấy của một người phụ nữ tiết lộ điều đó.

Người phụ nữ này là bạn gái cuối cùng của Einstein. Ngoài những lời tự bạch về sự khổ nhọc trong những công trình vật lý, hầu hết cuốn nhật ký của Johanna Fantova hồi tưởng những quan điểm của Einstein về chính trị thế giới và đời sống riêng tư của ông.

Tài liệu này là "một phác họa chân thực về những nỗ lực đấu tranh dũng cảm của Einstein trước đủ loại phiền hà của bệnh tật và tuổi tác", Freeman Dyson, một nhà toán học tại Viện nghiên cứu khoa học tiên tiến ở Princeton, bang New Jersey (Mỹ), nhận định.

Cuốn nhật ký 62 trang, ra đời ở Đức, được khám phá vào tháng 2 vừa qua trong hồ sơ của Fantova tại Thư viện Firestone, Đại học Princeton, nơi bà từng làm việc với tư cách người phụ trách. "Điều ngạc nhiên là vật lý được đề cập quá ít trong cuốn nhật ký", Donald Skemer, người quản lý bản thảo tại Thư viện Firestone, cho biết.

Fantova viết rằng bà ghi lại thời gian ở bên nhà vật lý lừng danh để "làm sáng tỏ vài điều chưa biết của chúng ta về Einstein, không phải như một người đàn ông vĩ đại trở thành huyền thoại trong thời đại mình, cũng không phải như một nhà bác học danh tiếng mà là một Einstein đời thường".

Fantova trẻ hơn Einstein 22 tuổi. Và mặc dù hai người dành thời gian đáng kể cho nhau bắt đầu từ những năm 1940, nhật ký của bà chỉ ghi lại mối quan hệ của họ từ tháng 10/1953 cho đến khi ông mất vào tháng 4/1955, ở tuổi 76. Bà mất vào năm 1981, khi 80 tuổi.

Cuốn nhật ký thuật lại quan điểm của Einstein về chính trị thời kỳ đó, mô tả ông chỉ trích những lời nói của Adlai Stevenson, cuộc chạy đua vũ trang hạt nhân và cuộc tấn công chống cộng do Thượng nghị sĩ Joshep McCarthy thực hiện với nhà khoa học J. Robert Oppenheimer.

"Sự đàn áp chính trị đối người bạn đồng liêu của ông là một nguyên nhân khiến ông vỡ mộng", Fantova viết. Ngoài chính trị, Fantova còn viết về sự cởi mở của Einstein và nỗ lực của ông để trả lời thư những người lạ mặt, một số trong đó cố gắng biến ông thành người theo đạo Cơ Đốc. Ông nói: "Tất cả những người điên trên thế giới đều viết thư cho tôi".

Cuốn nhận ký cũng ghi lại vào lần sinh nhật thứ 75 của mình, Einstein nhận được một quà tặng là một con vẹt. Sau khi nhận thấy nó trở nên u sầu, nhà bác học đã cố gắng thay đổi tâm trạng của nó bằng những câu đùa tục tĩu. Vào thời gian này, Einstein thường giả bộ ốm nặng để tránh khách tới thăm và muốn chụp ảnh ông, và tự tìm cách giải trí ngay cả khi ốm đau thật.

"Sức khỏe của Einstein bắt đầu sa sút nhưng ông vẫn tiếp tục tự buông thả theo những sở thích của mình như đi thuyền. Hiếm khi tôi thấy ông vui vẻ và rạng rỡ như trên con thuyền bé nhỏ cổ xưa kỳ lạ ấy", Fantova viết. Einstein còn gửi thư cho Fantova, mà một số trong đó được bà ghi lại vào nhật ký. Thư viện Princeton hiện cũng giữ một bộ sưu tầm các bài thơ, thư tay và ảnh mà Einstein gửi cho Fantova.

Einstein và người vợ thứ hai Elsa, đến Princeton năm 1933, khi Viện Nghiên cứu khoa học tiên tiến mới được thành lập. Elsa qua đời 3 năm sau đó. Fantova gặp nhà bác học vào năm 1929 ở Berlin. Bà đến Mỹ một mình năm 1939 và với sự thúc giục của Einstein, đã xin vào làm ở thư viện Đại học Bắc Carolina.

(theo AP)

 

Bí ẩn thiên tài của Einstein

Trần Hữu Quốc Huy

Einstein (1879-1955) Nhà Vật lý học, cha đẻ thuyết Tương Ðối và bom nguyên tử.

 

Dù đã mất từ năm 1955, ngày nay Albert Einstein vẫn còn cái để dạy cho chúng ta. Lần này là một bài học về khoa học thần kinh, và có lẽ là cả bài học về nuôi dạy trẻ. Sau khi nghiên cứu kỹ lưỡng chất xám trong bộ não đã sản sinh ra một loạt đột phá khoa học, bao gồm cả Thuyết Tương Đối, các nhà nghiên cứu Canada đã đi đến kết luận: Bộ não của Einstein thật sự khác lạ. Đặc biệt là họ đã phát hiện thấy phần não liên quan đến việc lập luận toán học rộng hơn 15% so với bình thường, và không bị phân chia bằng một nếp gấp như vẫn thường thấy trong não của tất cả chúng ta.

Bộ não của Einstein là một mẫu vật có giá trị vì những lý do vượt ra ngoài việc Einstein có năng lực suy nghĩ siêu phàm. Trước hết là, não của ông có hình dạng cực tốt khi ông không còn dùng đến nó. Định mệnh đã can thiệp vào chuyện này bằng cách đã cho ông cái chết đột ngột, ông bị phình tắc động mạch chủ bụng. Einstein đã biết trước và đã sắp xếp để lại bộ não của mình cho các nhà khoa học nghiên cứu. Chính vì vậy, trong vòng 7 giờ sau khi Einstein mất, não của ông đã được lấy ra khỏi hộp sọ. Để tránh bị hư hỏng, nó đã được tiêm, và rồi được treo lơ lửng trong Formalin. Sau đó, bộ não của ông được đo đạc, chụp ảnh và cắt nhỏ thành 240 khối nhỏ, mỗi khối có kích thước như một thỏi đường. Các khối này được ngâm trong celloidin và một số đã được cắt thành những phần nhỏ hơn để xét nghiệm bằng kính hiển vi.

Những gì mà Einstein cho phép những người khác làm với chính bộ não của mình trong khi ông vẫn còn dùng đến nó đã khiến cho mẫu vật não mà ông để lại hữu ích hơn nhiều. Tự đánh giá có cái gì đó đặc biệt trong cách mà não của chính mình làm việc, Einstein đã cố gắng hết sức để giúp cho các nhà khoa học đồng nghiệp làm sáng tỏ bí ẩn này, bằng cách đồng ý xét nghiệm điện não để ghi lại hoạt động sóng não của mình. Ông cũng chấp nhận các cuộc phỏng vấn, trong đó ông giải thích là ông đã giải quyết các vấn đề như thế nào. Cách giải thích của ông nghe hết sức lạ thường. Có lần Einstein nói: "Chữ dường như chẳng có vai trò gì, mà là có ít hay nhiều các hình ảnh rõ ràng". Quan sát này đã cung cấp manh mối lâm sàng cho Sandra F.Witelson, trưởng nhóm nghiên cứu đại học McMaster, nhóm này xem ra đã khám phá ra bí ẩn bộ não của thiên tài Einstein.

BỘ BẢN ĐỒ NÃO

Các thầy thuốc Hy Lạp cổ đại thường hồ nghi: Các chức năng khác nhau có mối liên hệ với các phần khác nhau của não? Đặc biệt, họ chú ý thấy những cú đấm vào đằng sau sọ có thể gây mù lòa. Điều này càng được khẳng định một cách khoa học hơn trong suốt Chiến tranh Thế giới lần thứ I bởi các bác sĩ phẫu thuật trong quân đội Đức, những người đã phẫu thuật binh lính bị thương ở đầu. Ngày nay, đã có một "bộ bản đồ" chi tiết định vị các phần của não điều khiển các hoạt động khác nhau của cơ thể.

Vì chức năng khác nhau cư trú ở các vị trí khác nhau, nên các nhận xét của Einstein về sự hình dung - mường tượng có ý nghĩa quan trọng đối với Witelson. Ở mức độ mà ở đó Einstein khám phá thiên nhiên, thì các vấn đề vật lý mà ông giải quyết là các bài toán. Nhìn vào phần não của Einstein liên quan đến việc lập luận toán học và so sánh nó với cùng khu vực đó ở các bộ não bình thường hơn, có thể sẽ cung cấp cho chúng ta chìa khóa giải đáp được bí ẩn thiên tài của Einstein.

Bà Witelson hiểu biết nhiều về các bộ não thông thường: Bà đã sưu tập chúng. Witelson đã nghiên cứu bộ sưu tập của mình và khôi phục lại não của những người đóng góp vào đây. Bộ sưu tập này gồm não của những người khỏe mạnh về mặt cơ thể lẫn tinh thần, có chỉ số thông minh từ 107 đến 125. Không có não của những người đần độn, nhưng cũng không có não của các nhà khoa học tên lửa.

Lần so sánh đầu tiên làm mọi người thấy ngượng vì bộ não của vị thiên tài tột đỉnh này rõ ràng là không có gì khác thường. Bà Witelson nói: "Giải phẫu thể đại não của Einstein nằm trong các giới hạn bình thường, trừ các thùy đỉnh. Sự nhận thức về thị giác và không gian, sự hình thành lập luận toán học và sự tưởng tượng về chuyển động đều được thực hiện chủ yếu thông qua trung gian là vùng đỉnh sau bên phải và bên trái". Nếu như bạn đã có lần tát vào bên đầu mình sau khi nói cái gì đó ngu ngốc, thì bạn đã đánh đúng chỗ đó rồi đấy. Trong não Einstein, các vùng này rộng hơn 15% so với bình thường và đang có khuynh hướng mất dần đi một cấu trúc gấp được tìm thấy trong não của tất cả những người bình thường như chúng ta.

Phát hiện này hoàn toàn không gây ngạc nhiên. Các nhà nghiên cứu trước đây cũng đã nhìn thấy những vùng não lớn ra tương tự như vậy. Bà Witelson cho biết: "Trong não của nhà toán học Gauss và nhà vật lý học Siljestrom, cũng thấy có sự phát triển rộng ra của các vùng đỉnh dưới".

DÙNG ĐẾN HAY ĐỂ MẦT?

Xét nghiệm của nhóm nghiên cứu Witelson không trả lời câu hỏi sâu hơn về việc liệu sự phát triển của các phần đặc biệt trong não có thể có liên quan đến sự thông minh hay không. Xét nghiệm này cũng không giải thích vùng não này đã lớn ra như thế nào. Bước kế tiếp các nhà nghiên cứu sẽ tiến hành là xét nghiệm các nhà toán học tình nguyện, những người này sẽ làm toán trong khi được chụp PET(positron emission tomography: chụp tia X cắt lớp phát positron). Được dùng chủ yếu trong các phòng thí nghiệm nghiên cứu, các máy chụp cắt lớp PET tạo ra các hình ảnh cho thấy phần nào của não làm việc khi đối tượng thí nghiệm đang làm các công việc khác nhau. Kỹ thuật này đã từng được dùng đến để xác định các phần nào của não có liên quan khi chúng ta nhìn, nói hay suy nghĩ. Nếu như vùng đỉnh sau phát triển cực mạnh hơn bình thường ở những người có tài năng toán học, thì hình hiển thị của máy chụp PET sẽ sáng rực lên như cây thông Nô-en.

Nếu điều này xảy ra, các nhà khoa học sẽ đối mặt với một vấn đề thậm chí lớn hơn: Có phải một số người mới sinh ra đã có bộ não được điều chỉnh tự nhiên cho việc lập luận toán học? Hay là, sự khác biệt về mặt vật chất này là sản phẩm của sự trải nghiệm? Ý kiến cho rằng những gì mà một đứa bé nhìn, nghe và cảm nhận ảnh hưởng tới sự phát triển của não bộ từ lâu đã không còn là xa lạ. Ngày càng có nhiều chứng cứ cho thấy: Các trải nghiệm thời thơ ấu có ảnh hưởng lớn đến sự phát triển của não bộ. Chẳng hạn như những đứa bé bị bệnh đục nhân mắt bẩm sinh sẽ bị mù lòa nếu như bệnh không được chữa ngay. Các tế bào liên quan đến việc phân giải hình ảnh nhìn thấy, ở một mức độ nào đó, đơn giản là bị chết dần đi. Não của trẻ em xem ra cũng được "cài đặt" để học cách hiểu nhiều ngôn ngữ, miễn là chúng được dạy khi chúng còn rất nhỏ. Khi chúng đến tuổi trung học, các mối liên hệ thần kinh cho phép học nhanh các ngôn ngữ đã mất đi lâu rồi. Vì trường hợp trên là đã được xác nhận, nên có lẽ người ta sẽ tìm thấy được chìa khóa để trở thành thiên tài trong thời thơ ấu, và các trải nghiệm và kích thích mà trẻ trải qua.

Nếu như dòng lý luận khoa học ngày nay đi khám phá hoạt động của não trở nên mệt lử (như nhiều người hoài nghi là nó sẽ như vậy), thì bài học cuối cùng mà Einstein phải dạy có lẽ là: Sự phát triển của não bộ tuân thủ theo cùng quy luật tự nhiên như mọi phần khác của cơ thể. Nói cách khác, các bậc cha mẹ, nếu không khiến cho trẻ nhỏ dùng não bộ của mình, chúng sẽ mất nó. Và một trong những hậu quả có thể là: trẻ sẽ chẳng còn cảm giác khó chịu khi bị người lớn cấm xem ti vi!

@ Chú thích: Bộ não của Einstein đã được cắt ra thành những khối nhỏ và được nghiên cứu bởi các đồng nghiệp của ông, những người mà giờ đây khẳng định rằng bộ não của Einstein thực sự khác lạ

(Theo Popular mechanics)

 

Einstein thử nghiệm thuyết Tương đối như thế nào?

Tia Sáng

Theo giai thoại, Einstein từng giải thích thuyết tương đối cho một người bình thường: "Khi một người đàn ông ngồi bên cô gái đẹp một giờ, thời gian dường như chỉ mới một phút. Nhưng khi đặt anh ta lên bếp lò nóng một phút, thời gian tưởng đã hàng giờ. Đó là tính tương đối".

Theo thuyết tương đối hẹp của Einstein, thời gian không phải là hằng định, mà có thể co giãn tùy thuộc vào hệ quy chiếu. Chẳng hạn trong một trường hẫp dẫn rất mạnh (như gần một ngôi sao siêu nặng) hay trên con tàu vũ trụ bay với tốc độ rất cao, thời gian bị kéo dài ra, khiến một năm sống trên tàu có thể tương đương cả nghìn năm trên trái đất. Đó là một cách để du hành tới tương lai. Nhưng giả thuyết sẽ chỉ là giả thuyết nếu nó chưa được thực nghiệm khẳng định.

Mới đây Steve Mirsky, người phụ trách chuyên mục Phản hấp dẫn trên tạp chí Người Mỹ khoa học, đã phát hiện ra rằng, bài toán "Cô gái đẹp và bếp lò nóng" không chỉ là giai thoại. Trong một thư viện địa phương, Mirsky tìm thấy một công trình ngắn của Einstein đăng tải trên Tạp chí khoa học và công nghệ ngoại nhiệt, tập 1, số 9, năm 1938 (đã đình bản một thời gian sau đó). Trong đó, nhà lý thuyết vĩ đại nhất thiên niên kỷ thứ hai đã tiến hành thực nghiệm để đánh giá thuyết tương đối qua bài toán "Cô gái đẹp và bếp lò nóng" thú vị nói trên. Dưới đây là toàn văn công trình nghiên cứu:

"Về tác dụng của kích thích cảm giác ngoài lên sự co giãn của thời gian", Albert Einstein, Viện nghiên cứu cao cấp, Princeton, New Jersey (Mỹ).

Tóm tắt: Khi người đàn ông ngồi bên cô gái đẹp một giờ, thời gian dường như chỉ mới một phút. Nhưng khi đặt anh ta lên bếp lò nóng một phút, thời gian tưởng đã hàng giờ. Đó là tính tương đối.

Vì hệ quy chiếu của người quan sát đóng vai trò quyết định đối với cảm giác dòng chảy thời gian của anh (chị) ta, trạng thái tinh thần của người quan sát có thể là yếu tố bổ sung cho cảm giác đó. Vì thế tôi nghiên cứu dòng thời gian ứng với hai trạng thái tinh thần nói trên.

Phương pháp: Tôi phải tìm một bếp lò nóng và một cô gái đẹp. Không may là tôi không thể kiếm được bếp lò, vì người nấu bếp vẫn cấm tôi lại gần bếp. Nên tôi phải tìm giải pháp thay thế bằng một miếng sắt phủ chrome của công ty Manning Bowman 1924, vì nó rất nóng khi nung lên. Tìm cô gái đẹp còn hơn là một vấn đề, vì tôi đang sống tại New Jersey. Tôi biết (vua hề) Charlie Chaplin vì đã dự buổi lễ chiếu ra mắt bộ phim Ánh đèn thành phố của ông năm 1931, nên tôi đề nghị ông thu xếp cho tôi gặp vợ ông, ngôi sao màn bạc Paulette Goddard, chủ nhân của shayna punim, tức một khuôn mặt đẹp, ở mức tuyệt vời.

Thảo luận: Tôi đi tàu lửa tới thành phố New York để gặp Paulette Goddard tại nhà hàng Con sò ở nhà ga Trung tâm. Paulette rất dễ thương và quyến rũ. Khi tôi cảm thấy một phút đã trôi qua, tôi liền kiểm tra đồng hồ và phát hiện ra rằng, khoảng thời gian thực là 57 phút, mà tôi làm tròn thành một giờ. Quay về nhà, tôi kẹp tấm sắt và nung nóng nó lên. Rồi tôi ngồi lên tấm sắt khi vẫn mặc quần dài và áo sơ mi không kéo lên. Khi cảm thấy một giờ đã trôi qua, tôi đứng dậy và kiểm tra đồng hồ để nhận ra rằng, thời gian chưa tới một giây. Để phù hợp với khung cảnh thí nghiệm và giả thuyết, tôi làm tròn kết quả thành một phút. Rồi tôi gọi bác sĩ.

Kết luận: Trạng thái tinh thần của người quan sát đóng vai trò quyết định trong cảm giác thời gian.

 

Einstein và thuyết Tương Ðối

Stephen Hawking (Lược sử thời gian)

... Einstein bắt chúng ta tin những điều khó tin thí dụ như: không gian hình cong, đường ngắn nhất nối liền hai điểm không phải là đường thẳng, vũ trụ có hạn nhưng không có biên giới, hai đường song song cuối cùng sẽ gặp nhau, tia sáng đi theo đường vòng cung, thời gian có tính chất tương đối và mỗi nơi phải do một cách...


Albert Einstein là một trong số rất ít nhân vật trong lịch sử, mà ngay khi còn sống đã trở thành một nhân vật huyền thoại. Tư tưởng của ông càng bí hiểm, người đời càng muốn hiểu, và tư tưởng chừng như tiếng nói của ông từ đỉnh núi Olympia vọng xuống trần gian. Bertrand Russel đã nhận xét rất đúng: “Ai cũng biết Einstein đã làm được những chuyện kỳ lạ, nhưng rất ít người hiểu đó là chuyện gì”. Cứ tạm cho rằng, mặc dầu không đúng hẳn, thế giới này chỉ có chừng một tá người hiểu trọn vẹn lý thuyết của Einstein về vũ trụ, thì sự kiện này đã thách thức hàng ngàn nếu không nói là hàng triệu người quyết tâm cố tìm hiểu xem nhà toán học phù thủy đó đã nói những gì.

Einstein khó hiểu vì phạm vi tư tưởng của ông vô cùng rộng lớn và phức tạp. T.E. Bridges đã nhắc đến một nhà khoa học Anh, từng viết rằng:

“Học thuyết của Einstein kết hợp sự kiện vật lý với sự kiện toán học và chỉ có thể giải thích bằng toán học. Muốn hiểu học thuyết của Einstein không thể không có một trình độ toán học rất cao”.

George W. Gray cũng nói tương tự:

“Einstein trình bày thuyết Tương đối bằng ngôn ngữ toán học, vì vậy rất khó trình bày thuyết này bằng thứ ngôn ngữ nào khác. Nếu trình bày thuyết Tương đối bằng ngôn ngữ thông thường thì chẳng khác gì dùng một cây kèn saxophone để dạo khúc hòa tấu số 5 của Beethoven”.


Tuy nhiên có lẽ có một vài nét trong vũ trụ quan của Einstein có thể diễn đạt bằng ngôn ngữ thông thường mà chỉ cần đến ngôn ngữ số hệ của toán học. Đây thật là một thứ thế giới kỳ ảo, làm đảo lộn những tư tưởng bắt rễ từ bao thế kỷ nay, “một món hổ lốn lạ lùng rất khó tiêu hóa đối với nhiều người”. Einstein bắt chúng ta tin những điều khó tin thí dụ như: không gian hình cong, đường ngắn nhất nối liền hai điểm không phải là đường thẳng, vũ trụ có hạn nhưng không có biên giới, hai đường song song cuối cùng sẽ gặp nhau, tia sáng đi theo đường vòng cung, thời gian có tính chất tương đối và mỗi nơi phải do một cách, phải đo chiều dài tùy theo tốc độ, vũ trụ không phải hình cầu mà là hình trụ, một vật thể chuyển động thì kích thước co lại, nhưng khối lượng lại tăng lên, thời gian là chiều thứ tư thêm vào ba chiều cao, dài và rộng...

Những đóng góp của Einstein cho khoa học nhiều không kể xiết, nhưng trước hết phải kể đến thuyết tương đối mà theo lời Banesh Hoffman: có một tính chất vĩ đại để đặt Einstein ngang hàng với những nhà khoa học lớn nhất của mọi thời đại như Isaac Newton và Archimède. Những nghịch lý mê hoặc và những thành công rực rỡ đã kích động mãnh liệt trí tưởng tượng của mọi người”.

Cuộc cách mạng của Einstein bắt đầu vào năm 1905, tức là năm tờ Chuyên san vật lý học ở Đức Annalen der Physik đăng một bài báo dài chừng 30 trang với cái nhan đề tầm thường là Động điện của những vật thể chuyển động. Năm đó Einstein mới 26 tuổi và là một viên chức bình thường trong cơ quan cấp bằng sáng chế ở Thụy Sĩ. Einstein sinh trong một gia đình Do thái trung lưu ở Ulm, Bavaria năm 1879. Khi còn nhỏ không có biểu hiện nào chứng tỏ ông là “thần đồng”, ngoại trừ năng khiếu toán học. Vì hoàn cảnh gia đình, nên năm 15 tuổi, Einstein phải tự lập. Sau này di cư sang Thụy Sĩ, Einstein theo học khoa học tại trường đại học bách khoa Zurich, thành hôn với một bạn sinh viên và trở thành công dân Thụy Sĩ. Không thực hiện được giấc mộng làm giáo sư đại học để kiếm sống, Einstein đành chấp nhận làm công chức, có nhiệm vụ thảo báo cáo và viết lại đơn từ của các nhà sáng chế gửi cho cơ quan cấp bằng sáng chế. Thời giờ rảnh, Einstein nghiên cứu rộng rãi tác phẩm của các nhà triết học, khoa học và toán học. Chẳng bao lâu sau ông đã chuẩn bị đầy đủ để tung ra một loạt những đóng góp mới cho khoa học, những đóng góp sẽ có tiếng vang rộng lớn sau này.

Trong tác phẩm năm 1905, Einstein tung ra “Thuyết Tương đối đặc biệt” làm rung chuyển quan niệm chung về không gian, thời gian, vật chất và năng lượng. Toàn bộ thuyết tương đối này dựa vào hai giả thuyết cốt yếu. Giả thuyết thứ nhất là: mọi sự chuyển động đều có tính chất tương đối. Để có một ý niệm cụ thể về nguyên tắc này, người ta thường hay lấy ví dụ người ngồi trong toa xe hỏa đang chạy. Nếu tất cả các cửa đều đóng kín, tối như bưng thì mọi người ngồi trên xe không có ý thức gì về tốc độ và phương hướng, thậm chí có lẽ không biết cả xe đang chạy nữa. Một người đi tàu thủy, nếu các cửa đóng kín, cũng ở trong tình trạng tương tự. Chúng ta nhận thức được sự chuyển động là qua sự tương đối với các vật khác. Ngay cả trái đất quay chúng ta cũng không nhận thấy, nếu không có những tinh cầu khác để so sánh.

Giả thuyết trụ cột thứ hai của Einstein là: Tốc độ của ánh sáng không bị lệ thuộc vào sự chuyển động của nguồn sáng. Tốc độ của tia sáng bao giờ cũng là 186.000 dặm một giây đồng hồ (xấp xỉ 300.000km/giây), bất kỳ ở nơi nào. Tia sáng xuyên qua trong toa xe hỏa đang chạy cũng có tốc độ ngang với tốc độ tia sáng chạy ở ngoài toa xe. Không có mãnh lực nào vượt được tốc độ của ánh sáng, chỉ tốc độ hạt điện tử mới suýt soát được với tốc độ của ánh sáng. Như vậy ánh sáng là thực thể độc nhất trong vũ trụ không bao giờ biến đổi.

Cuộc thí nghiệm nổi tiếng do hai nhà khoa học Mỹ Michelson và Morley thực hiện vào năm 1887 đã tạo cơ sở cho thuyết của Einstein về ánh sáng. Để đo tốc độ của ánh sáng cho đúng một cách tuyệt đối, hai nhà khoa học kia đã chế ra một hệ thống máy móc như sau: Hai đường ống, mỗi đường ống dài chừng một dặm được đặt thẳng góc với nhau. Đường ống thứ nhất đặt theo cùng chiều với chiều trái đất quanh chung quanh mặt trời, đường ống thứ hai hướng ngược lại với chiều quay của trái đất. Ở đầu mỗi một đường ống đặt một tấm gương cùng một lúc chiếu vào cả hai đường ống một chùm ánh sáng. Thời đó người ta tin rằng chỗ nào trống không, là có khí éther, và nếu thuyết này đúng thì một tia sáng sẽ chạy theo đường ống như người ta bơi ngược chiều, và một tia sáng khác sẽ chạy theo đường ống như người ta bơi xuôi chiều. Nhưng sau cuộc thí nghiệm, mọi người đều ngạc nhiên thấy rằng cả hai chùm tia sáng cùng dội ngược lại vào đúng một lúc như nhau. Thí nghiệm đó bị coi là một thất bại.

Thuyết của Einstein tung ra năm 1905 để trả lời những thắc mắc của Michelson, Morley và các nhà vật lý học khác. Trong các khoảng trống không có khí éther và cuộc thí nghiệm với hai đường ống đã đo rất đúng tốc độ của ánh sáng. Căn cứ vào thí nghiệm này, Einstein suy ra điều vô cùng quan trọng là tốc độ của ánh sáng không bao giờ thay đổi bất kể đo dưới điều kiện nào, và sự chuyển động của trái đất quay chung quanh mặt trời cũng không ảnh hưởng gì đến tốc độ của ánh sáng.

Trái với Newton, Einstein khẳng định rằng không làm gì có sự chuyển động tuyệt đối. Quan niệm có vật thể chuyển động một cách tuyệt đối trong không gian là điều vô lý. Sự chuyển động của vật thể chỉ là tương đối với sự chuyển dộng của vật thể khác.

Trạng thái của mọi vật thể là chuyển động ở trên mặt đất và khắp mọi nơi trong vũ trụ, không có vật thể nào là tuyệt đối đứng yên. Trong vũ trụ động, từ vật thể nhỏ như nguyên tử đến những dải thiên hà bao la, sự chuyển động là trạng thái vĩnh hằng. Trái đất quay chung quanh mặt trời với tốc độ 20 dặm/giây đồng hồ. Trong vũ trụ tất cả đều chuyển động, và không có thứ gì đứng im một chỗ, thì làm gì có tiêu chuẩn để đo tốc độ, chiều dài, kích thước, khối lượng và thời gian, ngoại trừ đo với sự chuyển động tương đối. Chỉ có ánh sáng là tuyệt đối, vì tốc độ của ánh sáng lúc nào cũng là 186.000dặm/giây đồng hồ, bất kể nguồn sáng, bất kể vị trí quan sát, đúng như cuộc thí nghiệm Michelson - Morley đã chứng tỏ.

 

 

... Theo thuyết tương đối của Einstein thì người ta có thể đuổi kịp quá khứ và sinh ra ở tương lai nếu người ta có tốc độ vượt tốc độ ánh sáng...   Thời gian và không gian không thể tách rời nhau. Mọi vật luôn luôn chuyển động, cho nên theo quan niệm của Einstein, chúng ta sống trong một vũ trụ bốn chiều mà thời gian là chiều thứ tư ...

Trong số những quan niệm của Einstein về vũ trụ, quan niệm về sự tương đối của thời gian đi ngược với quan niệm xưa nay, và khó hiểu hơn cả. Einstein chủ trương rằng: những biến cố xảy ra ở nhiều nơi khác nhau có thể xảy ra cùng một lúc đối với kẻ này, nhưng xảy ra khác lúc đối với kẻ khác ở một vị trí chuyển động tương đối với người trước. Thí dụ hai biến cố xảy ra cùng một lúc đối với người quan sát đứng trên mặt đất, có thể xảy ra khác lúc đối với người ngồi trên xe hỏa hay máy bay. Thời gian không tuyệt đối, mà là tương đối với vị trí và tốc độ của người quan sát. Áp dụng thuyết này để nhận định vũ trụ, người ta thấy rằng một biến cố, thí dụ một vụ nổ xảy ra không một lúc đối với người quan sát ở ngay trên tinh cầu đó và người quan sát ở trên trái đất. Một biến cố diễn ra trên một tinh cầu xa lắc có thể hàng năm mới chuyển hình ảnh tới mặt đất, mặc dầu ánh sáng chạy với tốc độ 186.000 dặm/giây đồng hồ. Vì tinh tú ta quan sát thấy hôm nay chỉ là vì tinh tú của bao nhiêu năm về trước, và có thể lúc này vì tinh tú ấy đã không còn.

Theo thuyết tương đối của Einstein thì người ta có thể đuổi kịp quá khứ và sinh ra ở tương lai nếu người ta có tốc độ vượt tốc độ ánh sáng. Mỗi tinh cầu chuyển động có một hệ thống thời gian riêng, khác hẳn hệ thống thời gian ở mọi tinh cầu khác. Một ngày trên trái đất chỉ là thời gian đủ để trái đất quay một vòng trên trục của nó. Sao Mộc mất nhiều thời giờ hơn trái đất để quay chung quanh mặt trời, vì vậy một năm trên sao Mộc dài hơn một năm trên trái đất. Tốc độ càng nhanh, thời gian càng chậm. Chúng ta đều quen chỉ nghĩ rằng mọi vật thể đều có ba chiều, nhưng Einstein chủ trương thời gian cũng là một chiều của không gian. Thời gian và không gian không thể tách rời nhau. Mọi vật luôn luôn chuyển động, cho nên theo quan niệm của Einstein, chúng ta sống trong một vũ trụ bốn chiều mà thời gian là chiều thứ tư.

Nói tóm lại, tiền đề cơ bản của thuyết Einstein trình bày lần đầu tiên nửa thế kỷ trước đây là tính tương đối của mọi chuyển động, và tính tuyệt đối độc nhất của ánh sáng.

Triển khai nguyên lý tương đối của mọi sự chuyển động, Einstein còn làm sụp đổ một quan niệm khác vốn vững chắc từ xa xưa. Từ trước người ta vẫn tin rằng chiều dài và khối lượng trong mọi trường hợp có thể quan niệm được vẫn là tuyệt đối và không thể thay đổi. Bây giờ Einstein khẳng định khối lượng hay trọng lượng cùng chiều dài của một vật thể thay đổi tùy theo tốc độ của vật thể đó. Einstein đưa ra thí dụ: một đoàn xe lửa dài một ngàn bộ (Bộ: 0,304 mét) chạy với tốc độ bốn phần năm tốc độ của ánh sáng. Đối với người đứng yên một chỗ thì đoàn tàu chạy chỉ còn dài 600 bộ, những đối với người ngồi trên thì đoàn tàu vẫn dài đủ 1000 bộ.

Tương tự như đoàn tàu, mọi vật thể chuyển động trong không gian cũng đều co ngắn lại tùy theo tốc độ. Một chiếc gậy dài 100 mã (mã (inch) = 0,025 mét), nếu phóng lên không gian với tốc độ 161.000 dặm/giây đồng hồ, sẽ co ngắn lại chỉ còn dài nửa mã. Trái đất thì quay trục nên chu vi cũng co rút lại chừng sáu phân mét.

Khối lượng cũng có thể thay đổi. Tốc độ càng nhanh thì khối lượng của vật thể càng tăng. Nhiều cuộc thí nghiệm đã chứng tỏ rằng vật thể bắn lên không gian với tốc độ lên tới 86% tốc độ ánh sáng, sẽ cân nặng gấp đôi so với khi còn nằm yên dưới đất. Sự kiện này có hậu quả quan trọng trong công cuộc phát triển nguyên tử sau này.

Thuyết tương đối của Einstein trình bày năm 1905 được coi là “Lý thuyết hạn chế về tính tương đối” vì chỉ áp dụng riêng đối với sự chuyển động.

 Tuy nhiên, trong vũ trụ chúng ta, hành tinh và các thiên thể rất ít khi chuyển động đều theo đường thẳng. Một lý thuyết phải bao gồm được mọi thứ chuyển động, mới đủ để mô tả vũ trụ. Vì lẽ đó, Einstein đã phải dành mười năm để xây dựng “Lý thuyết Tổng quát về tính tương đối”, trong đó ông nghiên cứu sức mạnh huyền bí đã hướng dẫn sự chuyển động của các hành tinh, định tinh, sao chổi, thiên thạch, thiên hà và những vật thể khác quay cuồng trong khoảng không của vũ trụ bao la.

Trong “lý thuyết tổng quát về tính tương đối” công bố năm 1915, Einstein đề ra một quan niệm mới về sức hút, đảo lộn hẳn những quan điểm về trọng lực và ánh sáng đã được người ta chấp nhận từ thời Isaac Newton. Newton cho trọng lực là một lực, nhưng khác với Newton, Einstein chứng minh rằng khoảng không gian chung quanh một hành tinh hay một thiên thể, là một trường hấp dẫn tương tự như từ trường chung quanh đá nam châm. Những vật thể lớn như mặt trời, các vì tinh tú đều tỏa ra chung quanh một trường hấp dẫn rất rộng. Trái đất và mặt trăng hút nhau là vì vậy.

Thuyết trường hấp dẫn còn giải thích những chuyển động không bình thường của sao Kim, một hành tinh gần mặt trời nhất, những chuyển động là nát óc những nhà thiên văn học tờ bao thế kỷ nay và là một trường hợp ngoại lệ, không tuân theo định luật về sức hút của Newton. Trường hấp dẫn các tinh tú có sức cực mạnh có thể bẻ cong tia sáng. Vào năm 1919, tức là mấy năm sau khi thuyết tổng quát về tính tương đối được tung ra, những bức ảnh chụp được trong một vụ nhật thực đã xác nhận thuyết của Einstein là đúng: các tia sáng đi theo đường cong chứ không phải đường thẳng, do bị tác động trường hấp dẫn của mặt trời.

Từ tiền đề đó, Einstein suy ra rằng:

Không gian hình cong. Chịu ảnh hưởng của mặt trời, các hành tinh quay theo những đường nào ngắn nhất, tương tự như con sông khi chảy ra biển, tùy theo địa hình mà chảy theo những đường tự nhiên nhất, dễ chảy nhất. Trong phạm vi trái đất, một con tàu hay một chuyến phi cơ vượt biển, đi theo không phải đường thẳng mà là đường cong nghĩa là cung của một vòng tròn. Hiển nhiên là đường gần nhất giữa hai điểm không phải đường thẳng mà là đường cong. Định luật này còn đúng cả với sự chuyển động của hành tinh hay tia sáng.

Nếu chấp nhận thuyết không gian có hình cong, phải đương nhiên chấp nhận thuyết không gian hữu hạn. Ví dụ, một tia sáng xuất phát ở một vì sao, sau hàng triệu năm ra đi, vẫn sẽ trở về nguồn sáng cũ, chẳng khác gì nhà du lịch đi một chuyến vòng quanh thế giới. Vũ trụ không phải là diễn ra bất tận trong không gian, mà có những giới hạn tuy không thể xác định được những giới hạn này.

Trong số những khám phá vĩ đại của Einstein về khoa học, đóng góp của ông cho công cuộc nghiên cứu về nguyên tử là có tác dụng trực tiếp và sâu rộng nhất đối với thế giới ngày nay. Ít lâu sau khi tờ chuyên san vật lý học tung ra thuyết tương đối vào năm 1905, Einstein còn cho đăng ở báo này một bài báo ngắn có tầm vang dội rất lớn, nhan đề là “Quán tính của một vật thể có tùy thuộc vào năng lượng của vật thể đó không?”. Einstein xác định rằng: ít ra là trên lý thuyết năng lượng nguyên tử có thể sử dụng được. Sức mạnh khủng khiếp của nguyên tử có thể được giải tỏa theo một phương trình do Einstein đề ra: E = mc2, nghĩa là: năng lượng bằng khối lượng nhân với tốc độ của ánh sáng, rồi lại nhân với tốc độ của ánh sáng lần nữa.

Nói một cách cụ thể, Einstein cho rằng: trong nửa cân Anh (cân Anh = 453,592 gam) của bất kỳ chất gì đều chứa một năng lượng tương đương với sức mạnh của bảy triệu tấn thuốc nổ TNT.

Một nhà bình luận đã nhận xét: nếu không có phương trình của Einstein “các nhà khoa học vẫn có thể mò mẫm tách được nguyên tử uranium, nhưng không chắc các nhà khoa học đó đã hiểu đây là một nguồn năng lượng khủng khiếp, vật liệu của những trái bom khủng khiếp”.

 

 

[...] Đối với Albert Einstein, người ta không thể không nói đến ảnh hưởng. Phải gọi những lý thuyết của ông là cách mạng vì đã mở ra kỷ nguyên nguyên tử. Kỷ nguyên này đưa nhân loại đi đến đâu chúng ta chưa thể biết. Hiện nay chúng ta chỉ biết rằng Einstein là nhà khoa học, nhà triết học vĩ đại nhất của thế kỷ... [...]

Trong phương trình nổi tiếng E = mc2, Einstein đã chứng minh năng lượng và khối lượng chỉ là một, ở hai trạng thái khác nhau và khối lượng chính là năng lượng đặc lại. Barnett đã nhận định rất đúng là phương trình E = mc2 “đã giải thích được rất nhiều điểm về vật lý học, từ bao lâu nay vẫn còn là những điểm bí mật. Phương trình đã giải thích tại sao chất quang tuyến phản xạ như radium và uranium lại có thể liên tiếp trong hàng triệu năm bắn ra những tia li ti chạy với tốc độ khủng khiếp. Phương trình còn giải thích tại sao mặt trời và các vì tinh tú lại có thể tuôn ánh sáng và sức nóng trong hàng tỷ tỷ năm, vì nếu mặt trời chỉ có lửa theo lối thông thường thì trái đất của chúng ta đã phải chết trong tối tăm u lạnh từ hàng triệu năm rồi. Phương trình còn cho chúng ta thấy năng lượng ghê gớm chứa chất trong nhân nguyên tử và tiên đoán chỉ cần một lượng rất nhỏ chất uranium cũng đủ tạo ra một trái bom có sức công phá cả một thành phố”.

Cho mãi đến năm 1939 phương trình của Einstein vẫn còn là lý thuyết. Vào năm đó, sau khi bị Đức quốc xã trục xuất khỏi châu Âu, Einstein sang Mỹ rồi ít lâu sau ông nhập quốc tịch Mỹ. Einstein được tin Đức quốc xã đang lùng để nhập cảng uranium và đang nghiên cứu về bom nguyên tử, ông liền viết cho Tổng thống Roosevelt một bức thư tối mật:

Những công cuộc nghiên cứu mới đây của E. Fermi và Szilard mà bản thảo đã được gửi tới tôi, khiến tôi nghĩ rằng trong tương lai rất gần, chất uranium có thể biến thành một nguồn năng lượng mới mẻ và quan trọng... Hiện tượng mới này có thể dẫn tới việc chế tạo bom, và có thể tin rằng... chỉ một trái bom loại đó, mang dưới tàu và cho nổ ở hải cảng có thể tàn phá toàn thể hải cảng và các vùng phụ cận.

Kết quả tức khắc của bức thư Einstein gửi cho Roosevelt là việc khởi công xây dựng đề án bom nguyên tử Manhattan. Năm năm sau, trai bom nguyên tử đầu tiên được đưa ra thử ở Almagordo Reservation thuộc bang New Mexico, và ít lâu sau Mỹ thả bom nguyên tử tàn phá Hiroshima, để sớm kết liễu chiến tranh với Nhật Bản.

Bom nguyên tử là một trong những kết quả thực tế vang dội nhất của lý thuyết Einstein. Tuy nhiên người ta vẫn còn phải kể đến thực tế khác nữa. Năm 1905, năm thuyết tương đối ra đời, các nhà khoa học triển khai định luật về điện ảnh học (Photoelectric Law) của Einstein, để giải thích những tác động điện ảnh huyền bí và do đó mở đường cho vô tuyến truyền hình, phim có tiếng nói, “con mắt thần” cùng những áp dụng khác. Chính vì phát minh này mà Einstein được tặng giải Nobel về vật lý năm 1922.

Trong những năm cuối đời, Einstein vẫn không ngừng nỗ lực xây dựng lý thuyết về Trường thống nhất (Unfided Field Theory) nhằm chứng minh tính chất hòa hợp và đồng nhất của tạo vật. Theo Einstein, các định luật vật lý học chi phối nguyên tử nhỏ bé cũng có thể áp dụng đối với những vật thể lớn lao trong không gian. Do đó lý thuyết về Trường thống nhất của Einstein giải thích được mọi hiện tượng vật lý theo một khuôn mẫu cố định. Lực hút, điện lực, từ lực và nguyên tử lực tất cả đều là những lực có thể giải thích được bằng một lý thuyết duy nhất. Năm 1950, sau gần nửa đời nghiên cứu, Einstein lần đầu tiên trình bày lý thuyết Trường thống nhất của ông trước thế giới. Ông ngỏ ý tin rằng thuyết này nắm giữ được chìa khóa của vũ trụ, thống nhất trong một quan niệm, từ thế giới cực nhỏ và quay cuồng của nguyên tử đến không gian mênh mông của các thiên thể. Vì những khó khăn về toán học nên thuyết của Einstein vẫn chưa được những sự kiện vật lý học kiểm chứng toàn bộ. Tuy vậy Einstein vẫn vững tin rằng lý thuyết về Trường thống nhất của ông giải thích được “tính chất nguyên tử của năng lượng” và chứng minh được sự hiện hữu của một vũ trụ có sắp đặt rất trật tự.

Tư tưởng triết lý đã gây cảm hứng và hướng dẫn Einstein qua bao nhiêu năm nỗ lực, và những phần thưởng cho những nỗ lực đó, đã được Einstein trình bày trong bài giảng về nguồn gốc Lý thuyết tổng quát về tương đối tại trường đại học Glasgow năm 1933.

Kết quả cuối cùng rất giản dị, bất kỳ một sinh viên thông minh nào cũng có thể hiểu được một cách dễ dàng. Nhưng chỉ có thể hiểu được sau khi trải qua những năm âm thầm tìm kiếm một sự thật mà người ta chỉ cảm thấy chứ không thể nói lên được. Người ta chỉ có thể hiểu được điều đó khi lòng ham muốn lên đến mức cuồng nhiệt, và khi đã trải qua những giai đoạn tin tưởng rồi nghi ngờ, nghi ngờ rồi tin tưởng cho tới một lúc nào đó, bừng hiểu rõ được sự thật sáng sủa”.

Trong một dịp khác, Einstein đã bộc lộ cá tính tinh thần của ông:

Cảm xúc đẹp nhất và sâu xa của con người là cảm xúc trước sự huyền bí. Chính cảm xúc này đã khiến cho khoa học chân chính nảy nở. Những ai không còn có những cảm xúc đó, không còn biết ngạc nhiên và chỉ biết đứng ngẩn người ra vì sợ hãi thì sống cũng như chết. Cảm thấy điều huyền bí mà con người không sao giải thích nổi, là vì nó chỉ biểu lộ ra khi mà khả năng ít ỏi đáng buồn của chúng ta chỉ hiểu được những hình thức thấp kém của cái quy luật cao siêu dưới vẻ đẹp rạng rỡ hơn hết. Chính sự biết đó và cảm xúc đó đã là nền tảng đích thực của tôn giáo”.

Con số nhà khoa học tán dương Einstein không kể xiết. Chúng ta hãy đọc hai tác phẩm đã viết về Einstein, để hiểu địa vị độc nhất của ông trong giới khoa học. Paul Oehser viết:

Đối với Albert Einstein, người ta không thể không nói đến ảnh hưởng. Phải gọi những lý thuyết của ông là cách mạng vì đã mở ra kỷ nguyên nguyên tử. Kỷ nguyên này đưa nhân loại đi đến đâu chúng ta chưa thể biết. Hiện nay chúng ta chỉ biết rằng Einstein là nhà khoa học, nhà triết học vĩ đại nhất của thế kỷ. Trước mắt chúng ta, Einstein có dáng dấp một vị thánh và những công trình của ông đã khiến chúng ta thêm tin tưởng vào khả năng trí tuệ của con người. Ông còn là hình ảnh bất diệt của con người luôn luôn tìm hiểu”.

Nhà khoa học Banesh Hoffman đã kết luận như sau:

Einstein vĩ đại không hẳn chỉ vì những tư tưởng khoa học mà còn vì tác dụng tâm lý. Trong một giai đoạn nghiêm trọng của lịch sử khoa học, Einstein đã chứng minh rằng, những tư tưởng xưa không hẳn đã là thiêng liêng bất di bất dịch. Chính sự chứng minh đó đã mở đường cho trí tưởng tưởng của những người như Bohr và Broglie khiến họ có thể thành công trong địa hạt lượng tử. Toàn thể khoa vật lý học của thế kỷ 20 đều mang dấu ấn không thể xóa nhoà của thiên tài Einstein”.